US009332083B2

a2z United States Patent (10) Patent No.: US 9,332,083 B2
Gao et al. (45) Date of Patent: May 3, 2016
(54) HIGH PERFORMANCE, DISTRIBUTED, (56) References Cited
SHARED, DATA GRID FOR DISTRIBUTED
JAVA VIRTUAL MACHINE RUNTIME U.S. PATENT DOCUMENTS
ARTIFACTS 7493449 B2* 2/2009 Marwinski GOGF 12/12
711/133
(71) Applicant: International Business Machines 7,788,711 B1* 82010 Suncccovnnnns HOA4L 63/0815
Corporation, Armonk, NY (US)) 709/223
7,797,393 B2 9/2010 Qiu et al.
(72) Inventors: Yugqing Gao, Mount Kisco, NY (US); (Continued)
Xavier Rene Gllel‘ill, White Plains, NY OTHER PUBLICATIONS
(US); Graeme Johnson, Ontario (CA)
Myers, A., Lecture 14, CS 312, Cornell University, Ithaca NY, Dec. 4,
(73) Assignee; International Business Machines 2003. www.cs.cornell.edu/courses/cs312/lectures/lec 14 html.*
Corporation, Armonk, NY (US) (Continued)
(*) Notice: Subject. to any disclaimer,. the term of this Primary Examiner — Jimmy H Tran
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm — Gates & Cooper LLP
U.S.C. 154(b) by 323 days.
57 ABSTRACT
(21) Appl. No.: 13/904,843 .
A server and/or a client stores a metadata hash map that
(22) Filed: May 29, 2013 includes one or more entries associated \yith keys for data
records stored in a cache on a server, wherein the data records
(65) Prior Publication Data comprise Java Virtual Machine (JVM) artifacts or monitoring
information. Each of the entries stores metadata for a corre-
US 2014/0359043 Al Dec. 4,2014 sponding data record, wherein the metadata comprises a
server-side remote pointer that references the corresponding
(51) Int. CL data record stored in the cache, as well as a version identifier
HO4L 29/08 (2006.01) for the key. A selected data record is accessed using a pro-
GOGF 15/167 (2006.01) vided key by: (1) identifying potentially matching entries in
(52) US.CL the metadata hash map using the provided key; (2) accessing
CPC . HO4L 67/2842 (2013.01); GO6F 15/167 data records stored in the cache using the server-side remote
(2013.01) pointers from the potentially matching entries; and (3) deter-
(58) Field of Classification Search mining whether the accessed data records match the selected

CPC ..o HO4L 67/2842; HO4L 29/08549;
HO04L 29/06; HO4L 29/08072; HO4L 49/90;
GO6F 15/167; GO6F 13/28

See application file for complete search history.

data record using the provided key and the version identifiers
from the potentially matching entries.

18 Claims, 10 Drawing Sheets

CLIENT 402
HASH MAP 418 SERVER 400
- MEMORY 414 ‘//412
; { 2\ o Page ..F9
HASH MAP 418 ///410
CLIENT 402 /412
) Page | FA i
HASH MAP 418§ .-
& -.OF0i104,v07,’Small Gadget’ 410
b Hgloewmenal 1 TSP — PR DU N : - : §p o
S ..12Ci108,v11,'Big Gadget’ |~

US 9,332,083 B2
Page 2

(56)

7,912,695
7,941,401

8,046,425
8,161,353

8,392,798
8,434,080
8,576,861
8,645,939
8,789,026
8,793,467
8,861,527
8,904,004
8,938,725
9,075,710
2002/0038390
2003/0159006
2004/0010612
2006/0036602
2006/0143359
2006/0143427

2006/0143595
2006/0277180

References Cited

U.S. PATENT DOCUMENTS

B2 *
B2 *

Bl
B2 *

B2 *
B2 *
B2 *
B2 *
B2 *
B2

BL*
B2 *

B2 *

3/2011
5/2011

10/2011
4/2012

3/2013
4/2013
11/2013
2/2014
7/2014
7/2014
10/2014
12/2014
1/2015
7/2015
3/2002
8/2003
1/2004
2/2006
6/2006
6/2006

6/2006
12/2006

Krishnamurthy ... GO6F 11/3404

703/22
Okamoto GO6F 17/30566
707/636
Gopalan et al.
Flynnccooocee. GO6F 17/30949
714/53
Flynnccooocee. GO6F 17/30949
714/53
Yendluricccooveene GOGF 8/60
717/177
Cardona HO04L 49/90
370/412
Felts ..oovvviviieinn GOG6F 8/60
709/223
Auerbach GOGF 8/456
717/120
Colgrove et al.
Baoetal. 370/392
Havemose GOGF 8/61
709/226
Auerbach GOGF 8/456
717/120
Talagala et al.
Callsen et al.
Frank et al.
Pandya
Unangst et al.
Dostertetal.ccccoouvnn. 711/6
Marwinski GOGF 12/12
711/216
Dostertetal. 717/127
Okamoto GO6F 17/30566

2008/0133212 Al* 6/2008 Krishnamurthy ... GO6F 11/3404

703/22
2009/0144728 Al* 6/2009 Feltsccccoeovviennne. GOGF 8/60
717/175
2010/0031000 Al* 2/2010 Flynn GOGF 17/30949
711/216
2010/0082766 Al* 4/2010 Dreierccoooovvvvnnnnn. 709/216
2010/0262694 Al* 10/2010 Havemose GOGF 8/61
709/226
2011/0022801 Al 1/2011 Flynn
2011/0055471 Al* 3/2011 Thatcher GOGF 3/0608
711/114
2012/0102486 Al* 4/2012 Yendluri GOGF 9/5072
717/177
2012/0124030 Al 5/2012 Seetharama et al.
2012/0204024 Al 8/2012 Augenstein et al.
2012/0210095 Al* 82012 Nellans GOGF 12/1072
711/206
2013/0036408 Al* 2/2013 Auerbach ... GOGF 8/456
717/140
2013/0036409 Al* 2/2013 Auerbach ... GOGF 8/456
717/140
2014/0229600 Al* 82014 Shettyetal. 709/223
2014/0280024 Al* 9/2014 Baskett GOGF 17/30498
707/714
2014/0331016 Al* 11/2014 Dawson GOGF 9/45558
711/162
2015/0012539 Al* 1/2015 McHughetal. 707/737

OTHER PUBLICATIONS
IPCOMO000196714D; “High Performance Cache With LRU
Replacement Policy”; http://priorartdatabase.com/IPCOM/1967 14,
Jun. 12, 2010.

Oliver, JK.; “Cache Hash Overflow Table for Computers Using
Cache Memory”; http://www.ip.com/pubview/
IPCOMO000035915D; Jan. 28, 2005.

* cited by examiner

U.S. Patent May 3, 2016 Sheet 1 of 10 US 9,332,083 B2

108

CLIENT

- .
SERVER

CLIENT

FIG. 1

U.S. Patent May 3, 2016 Sheet 2 of 10 US 9,332,083 B2

202 204
PROCESSOR PROCESSOR
206
< SYSTEM BUS
210
208\ / FIG. 2
S MEMORY
CONTROLLER/ /O BRIDGE
CACHE 214

7

[T
W R o] o
“_ TT TT
LOCAL

MEMORY NETWORK
MODEM /ADAPTER
200 2 218 220
jas]
0/1_
S PCIBUS
(— | BroGE T PCIBUS >
GRAPHICS \
ADAPTER 6

\ 222
230 PCI BUS
C: BRIDGE ,_PCIBUS >
HARD S \
DISK \

5 228
\ ~ 224
232

FIG. 2

US 9,332,083 B2

Sheet 3 of 10

May 3, 2016

U.S. Patent

NNm m .@—& o e renn oS e vowm s meee —
vmm/ / omm/ \ |
FAN) _ AAG \%/]
_ oo |
H3LdVay 50C 'y zn
AHOWIN WNICAOW ISNOW ANY \ /and |
QYvogAIM 0ge |
! Vi _
P i e |
gze /| |
|
8ie Hvsia “
/ 0ig _ \—
y1E | |
¥3Ldvay / laze \ <.~ |
o3aAINOIaNY d3ldvdy d3.1dvayv | y3ldvay | |
SOIHAVYO JOV4HILNI NG NV 1z1c/ | SN8 LSOH |
A/_v NOISNYdX3 | I1SOS |
s i s S
A 308 SN8 10d
91¢ Y0§ 80¢ F \V A
g \
H3Ldvay AHOWINW _.....L/ 39aIH8/IHOVD \FEL/
HOSSIDOHd
oKany NIVIN N—/] 1odiusoH N—/

US 9,332,083 B2

Sheet 4 of 10

May 3, 2016

U.S. Patent

Vv 'Old

OIN VIAQY JINVAQY | _— 90y
£ : LM YINQY
O — amu Nﬁg . peaJ yinay
n@.\\.@ ..t‘.w.n.-......“.m
YNNG RS %,
W g0 wWa
v e
35Bpes Big TTASoT bzt 11 & %
\ .,.v.». Mun;uacxn\nuavao:ou:avawno.ounvauxcuownw n.z..
. { 19bpen b ‘50T 3
0Ly 77 ,396pen ||ews, Z0APOT 040 i \\\wsc“wwemmwxen_m“:mn\u,cmwww__ N
5 0Ly~ VO obeq i
v4' abed =
_ P ciy 9i¥ AHOW3IW — 2g0p
64" abed
iy AMOWIAN
00y ¥3ANE3S ZOov N3O ~— d8ov

US 9,332,083 B2

Sheet 5 0f 10

May 3, 2016

U.S. Patent

Bra4s

0cy

/

ay old

X
\
i / P
s\
h

L

1
01

A2bpes Big, TTIA'S

A9bpen jlews,’L0A'bOT

5 v obed
P P h@ww“aoﬂi
e i eees?™
\\\ nuw,
i /
Hrsenercanen
! 64" obed

e
«

o ®

T

%)

yLy AMOWIN

oy
e
aaaaaa
uuuuuuuuu
.
aaaaa
«««««

®
amomo...xazn_xn.w....a.:..nw...;.:..n....:.uw.“....

00V J3NL3S

ey
A

N

a80y

"

ogzy 9zTy erTy

\ \ \

TIA IDZT " ivd &

02V

P

\EN

N

LOA £040° V4™

6

<0 LN3IO

V.w:n

US 9,332,083 B2

v Old

Sheet 6 of 10

May 3, 2016

U.S. Patent

Jebpen 619, TTA'S0TIDZT ™ ; SN “‘
] ’ - | ,,,,,,,,,,—”\.\ / v g
J39bpen [jews,’ L0A'P0Ti040" Y
v+ abed . 8LY dVIN HSVH
ozenv @ e oeen\. m W"u“”M
YR N 20y LN3O
i P | 4\),/
= .%&.Wﬁ&ﬁu&ﬁ@:f W.&ﬁ,ﬁwﬁ&w. ;
//:\\
s e e 8Ly dVIN HSVH
& 4 ™
64" obeq | % X
iy AHOWIN
00% MIANIS 8Ly dVIN HSVH

¢0v LN3ITO

U.S. Patent

May 3, 2016 Sheet 7 of 10

CREATE AND STORE A

US 9,332,083 B2

500

METADATA HASH MAP | _/

ON A SERVER AND ONE
OR MORE CLIENTS

ACCESS AND MATCH
DATA RECORDS USING -
KEY AND METADATA

N4

502

504

UPDATE THE |

METADATA HASH MAP |

FIG. 5

U.S. Patent May 3, 2016 Sheet 8 of 10

US 9,332,083 B2

USER HEAP USER HEAP
606 606

JIT CODE JIT CODE
608 608

AOT CODE
610

USER CLASSES
612

SYSTEM CLASSES
614

JVM
604

0OS IMAGE
602

COMPUTE NODE 600

FIG. 6

U.S. Patent May 3, 2016 Sheet 9 of 10 US 9,332,083 B2

CACHE CACHE CACHE
REPLICA REPLICA REPLICA
SERVER SERVER SERVER

724 724 724

CACHE CACHE CACHE
PRIMARY PRIMARY PRIMARY
SERVER SERVER SERVER

722 722 722
USER HEAP USER HEAP
706 706
JIT CODE CLIENT JIT CODE
708 720 710 720 708
AOT CODE
712
USER CLASSES
714
SYSTEM CLASSES
716
720 720

JVM CACHE JUM
704 SERVICES 704
718
0S IMAGE
702
COMPUTE NODE 700

FIG. 7

U.S. Patent

May 3, 2016

824

CACHE
SERVER

CACHE
SERVER
824

CACHE
p2pP
CLUSTER
822

Sheet 10 of 10

US 9,332,083 B2

CACHE
SERVER
824

USER HEAP
806

USER HEAP
806

JIT CODE
808

820

CLIENT
810

820

JIT CODE
808

AOT CODE
812

USER CLASSES
814

SYSTEM CLASSES
816

JVM
804

820

CACHE
SERVICE
818

820

08 IMAGE
802

COMPUTE NODE 800

JVM
804

FIG. 8

US 9,332,083 B2

1

HIGH PERFORMANCE, DISTRIBUTED,
SHARED, DATA GRID FOR DISTRIBUTED
JAVA VIRTUAL MACHINE RUNTIME
ARTIFACTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to the following co-pending and
commonly-assigned patent applications:

U.S. Utility patent application Ser. No. 13/683,319, filed
on Nov. 21, 2012, by Xavier R. Guerin and Tiia J. Salo,
entitled “RDMA-OPTIMIZED HIGH-PERFORMANCE
DISTRIBUTED CACHE”; and

U.S. Utility patent application Ser. No. 13/872,007, filed
on Apr. 26, 2013, by Xavier R. Guerin and Tiia J. Salo,
entitled “RDMA-OPTIMIZED HIGH-PERFORMANCE
DISTRIBUTED CACHE”;

which applications are incorporated by reference herein.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates in general to database management
systems performed by computers, and in particular, to an
RDMA-optimized high performance distributed cache.

2. Description of Related Art

Today’s customer demand for instant responsiveness
drives applications to exploit various caching schemes.
Small-scale applications can rely on local caching and repli-
cation. However, when scaling out Internet applications, and
the use of clouds, where server-affinity across requests cannot
be guaranteed and the data volumes involved are massive,
local caching cannot be used anymore. Instead, systems have
to rely on partitioned and distributed caches (e.g. WebSphere
Extreme Scale™ or Oracle Coherence™) that have to be
accessed remotely.

A conventional key-value cache architecture is such that
the client sends a request for data to a server over a network
passing a key as a parameter. The server performs a key
lookup (usually hash-based) in its cache for the associated
object-value, e.g., a handle for or pointer to a data object. If
found, the data object is serialized and returned to the client.
Upon receiving the serialized data object, the client deserial-
izes it and returns it to the requesting application.

SUMMARY OF THE INVENTION

According to one or more embodiments of the present
invention, a method, apparatus, and article of manufacture is
provided for accessing one or more data records stored in a
cache on a server, wherein the data records comprise Java
Virtual Machine (JVM) artifacts or monitoring information.

A server and/or a client stores a metadata hash map that
includes one or more entries associated with keys for the data
records stored in the cache on the server. Each of the entries
stores metadata for a corresponding data record, wherein the
metadata comprises a server-side remote pointer that refer-
ences the corresponding data record stored in the cache, as
well as a version identifier for the key. A selected data record
is accessed using a provided key by: (1) identifying one or
more potentially matching entries in the metadata hash map
using the provided key; (2) accessing one or more data
records stored in the cache on the server using the server-side
remote pointers from the potentially matching entries in the
metadata hash map; and (3) determining whether the
accessed data records match the selected data record using the

10

15

20

25

30

35

40

45

50

55

60

65

2

provided key and the version identifiers from the potentially
matching entries in the metadata hash map.

The JVM artifacts stored in the cache on the server and
accessed by the client, can be shared with other applications
in a “Shared Classes” JVM environment. These shared JVM
artifacts may comprise generated code, user classes or system
classes. When the artifact is generated code, and is not found
in the cache, the client may create the data record comprising
the artifact and store the data record in the cache on the server.

The monitoring information stored in the cache on the
server and accessed by the client, may comprise run-time
information from a JVM, wherein the monitoring informa-
tion is used to tune the JVM.

BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings in which like reference
numbers represent corresponding parts throughout:

FIG. 1is a diagram illustrating an exemplary network data
processing system that could be used to implement elements
of at least one embodiment of the present invention.

FIG. 2 is a diagram illustrating an exemplary data process-
ing system that could be used to implement elements of at
least one embodiment of the present invention.

FIG. 3 is a diagram illustrating an exemplary data process-
ing system that could be used to implement elements of at
least one embodiment of the present invention.

FIG. 4A is a schematic that illustrates a system environ-
ment using RDMA for caching, according to at least one
embodiment of the present invention.

FIG. 4B is a schematic that illustrates a metadata hash map
used with RDMA operations, according to at least one
embodiment of the present invention.

FIG. 4C is a schematic that illustrates a server transmitting
entries from a metadata hash map to one or more clients at
some designated time, according to at least one embodiment
of the present invention.

FIG. 5 is a flowchart that illustrates the general steps or
functions for using an RDMA-optimized cache to access a
data record stored in the cache on a server, according to at
least one embodiment of the present invention.

FIG. 6 is a schematic diagram that illustrates a “Shared
Classes” technology, according to one embodiment of the
present invention.

FIG. 7 is a schematic diagram that illustrates a Client/
Server Architecture implementation, according to one
embodiment of the present invention.

FIG. 8 is a schematic diagram that illustrates a Peer-2-Peer
(P2P) Cluster Architecture implementation, according to one
embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

In the following description, reference is made to the
accompanying drawings which form a part hereof, and in
which is shown by way of illustration one or more specific
embodiments in which the invention may be practiced. It is to
be understood that other embodiments may be utilized and
structural and functional changes may be made without
departing from the scope of the present invention.

Overview

The flow described in the above “Description of Related
Art” has to pass through a TCP/IP stack at least four times,
e.g., Client to Network Interface Controller (NIC), NIC to
Server, Server to NIC, and NIC to Client. Moreover, the data
object has to undergo a (de)serialization operation twice, and
the data object gets copied multiple times as it flows through

US 9,332,083 B2

3

the numerous I/O stack layers. As a result, remote access may
be as much as three orders of a magnitude slower than local
access (i.e., hundreds of microseconds vs. nanoseconds). This
either completely prevents scaling out the applications or
makes the applications prohibitively slow.

Embodiments of the invention described herein include a
re-architected, distributed key-value pair cache that is config-
ured suitably for RDMA (Remote Direct Memory Access)
communication, avoids the above described TCP/IP protocol
stack issues, and reduces operating system involvement for
data transfers. This results in extremely fast, key-based cache
lookups over a network.

The server stores all cache entries in large pre-allocated
and pinned/registered memory pages. For each entry that is
added to the cache, metadata is created that contains infor-
mation about the location of the entry in the cache, as well as
the version of the key for the entry. The metadata can be used
to access the cache entries from outside of the server via an
RDMA network adapter.

The server contiguously stores the key and data values of
an entry in a memory region allocated by a RDMA-aware
store. The key also includes a unique version identifier, which
is equivalent to the one stored in its metadata. The server
stores handles or pointers to the cache entries and the version
identifiers for the keys in a metadata hash map that is hashed
by the entry’s key.

Instead of providing clients with a remote get/put interface
to the cache stored on the server, the server provides the
clients with some or all of the metadata hash map that con-
tains key-value pairs made of the cache entries’ keys paired to
metadata comprising their remote RDMA pointers and the
keys’ version identifiers. The metadata hash map allows a
client to look up a cache entry’s metadata using a key, and
then access the cache entry on the server using the remote
RDMA pointer in a one-sided RDMA operation and perform-
ing a comparison with the version identifier for the key.

One-sided RDMA operations do not involve server-side
software, because these operations are performed by an
RDMA NIC, wherein the NIC performs a DMA operation
directly to or from the server’s memory, which results in very
low server CPU utilization even under a heavy load. Specifi-
cally, read, update and delete operations can be implemented
using one-sided RDMA operations, while create operations
require some server-side software involvement, because cre-
ate operations introduce new keys.

The complete metadata hash map is stored on the server,
while the clients may store the complete metadata hash map
or only a subset of entries from the metadata hash map. The
metadata hash map is kept relatively small having a size in the
10s of megabytes (MBs) for even a large cache having a size
in the 10s of gigabytes (GBs) by using advanced hashing
techniques that substantially reduce collisions and hence
avoid storing the keys in the client memory.

At startup, the client starts with an empty metadata hash
map, which acts as a local metadata cache, and the metadata
hash map is updated thereafter as the client accesses the
cache. Hence, the client reacts differently to cache misses,
cache hits, and stale metadata. The client uses its metadata
hash map to locally look up a remote cache entry’s handle and
use it to directly perform CRUD (Create, Read, Update,
Delete) operations on the entry over RDMA.

As a result, the present invention can be used for global
storage of, and faster access to, data necessary for various
applications, such as various enterprise applications.
Embodiments of the present invention also can be used for
global storage of, and faster access to, data resulting from
real-time monitoring and analytics. In addition, embodiments

20

30

40

45

4

of'the present invention can be used for any data processing at
Internet Scale messaging rates.

Thus, the advantages presented by embodiments of this
invention are substantial and almost disruptive in nature. The
RDMA-optimized cache “leapfrogs” the performance of
prior art techniques by increasing throughput and accelerat-
ing latency-critical scenarios that depend on access to distrib-
uted data.

Hardware and Software Environment

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the

US 9,332,083 B2

5

remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

With reference now to FIG. 1, a pictorial representation of
a network data processing system 100 is presented in which
the present invention may be implemented. Network data
processing system 100 contains a network 102, which is the
medium used to provide communications links between vari-
ous devices and computers connected together within net-
work data processing system 100. Network 102 may include
connections, such as wire, wireless communication links, or
fiber optic cables etc.

10

15

20

25

30

35

40

45

50

55

60

65

6

In the depicted example, server 104 is connected to net-
work 102 along with storage unit 106. In addition, clients 108,
110, and 112 are connected to network 102. These clients 108,
110, and 112 may be, for example, personal computers or
network computers. In the depicted example, server 104 pro-
vides data, such as boot files, operating system images, and
programs to clients 108, 110 and 112. Clients 108, 110 and
112 are clients to server 104. Network data processing system
100 may include additional servers, clients, and other devices
not shown. In the depicted example, network data processing
system 100 is the Internet with network 102 representing a
worldwide collection of networks and gateways that use the
TCP/IP suite of protocols to communicate with one another.

Referring to FIG. 2, a block diagram of a data processing
system that may be implemented as a server, such as Server
104 in FIG. 1, is depicted in accordance with an embodiment
of'the present invention. Data processing system 200 may be
a symmetric multiprocessor (SMP) system including a plu-
rality of processors 202 and 204 connected to system bus 206.
Alternatively, a single processor system may be employed.
Also connected to system bus 206 is memory controller/
cache 208, which provides an interface to local memory 209.
1/0 bus bridge 210 is connected to system bus 206 and pro-
vides an interface to /O bus 212. Memory controller/cache
208 and I/O bus bridge 210 may be integrated as depicted.

Peripheral component interconnect (PCI) bus bridge 214
connected to I/O bus 212 provides an interface to PCI local
bus 216. A number of modems may be connected to PCI local
bus 216. Typical PCI bus implementations will support four
PCI expansion slots or add-in connectors. Communications
links to network computers 108, 110 and 112 in FIG. 1 may be
provided through modem 218 and network adapter 220 con-
nected to PCI local bus 216 through add-in boards. Additional
PCI bus bridges 222 and 224 provide interfaces for additional
PClI local buses 226 and 228, from which additional modems
or network adapters may be supported. In this manner, data
processing system 200 allows connections to multiple net-
work computers. A memory-mapped graphics adapter 230
and hard disk 232 may also be connected to I/O bus 212 as
depicted, either directly or indirectly.

Those of ordinary skill in the art will appreciate that the
hardware depicted in FIG. 2 may vary. For example, other
peripheral devices, such as optical disk drives and the like,
also may be used in addition to or in place of the hardware
depicted. The depicted example is not meant to imply archi-
tectural limitations with respect to the present invention.

The data processing system depicted in FIG. 2 may be, for
example, an IBM e-Server pSeries system, a product of Inter-
national Business Machines Corporation in Armonk, N.Y.,
running the Advanced Interactive Executive (AIX) operating
system or LINUX operating system.

Server 104 may provide a suitable website or other inter-
net-based graphical user interface accessible by users to
enable user interaction for aspects of an embodiment of the
present invention. In one embodiment, Netscape web server,
IBM Websphere Internet tools suite, an IBM DB2 for Linux,
Unix and Windows (also referred to as “IBM DB2 for LUW™)
platform and a Sybase database platform are used in conjunc-
tion with a Sun Solaris operating system platform. Addition-
ally, components such as JBDC drivers, IBM connection
pooling and IBM MQ series connection methods may be used
to provide data access to several sources. The term webpage
as it is used herein is not meant to limit the type of documents
and programs that might be used to interact with the user. For
example, a typical website might include, in addition to stan-
dard HTML documents, various forms, Java applets, JavaS-
cript, active server pages (ASP), Java Server Pages (JSP),

US 9,332,083 B2

7

common gateway interface scripts (CGI), extensible markup
language (XML), dynamic HTML, cascading style sheets
(CSS), helper programs, plug-ins, and the like.

With reference now to FIG. 3, a block diagram illustrating
a data processing system is depicted in which aspects of an
embodiment of the invention may be implemented. Data pro-
cessing system 300 is an example of a client computer. Data
processing system 300 employs a peripheral component
interconnect (PCI) local bus architecture. Although the
depicted example employs a PCI bus, other bus architectures
such as Accelerated Graphics Port (AGP) and Industry Stan-
dard Architecture (ISA) may be used. Processor 302 and main
memory 304 are connected to PCI local bus 306 through PCI
bridge 308. PCI bridge 308 also may include an integrated
memory controller and cache memory for processor 302.
Additional connections to PCI local bus 306 may be made
through direct component interconnection or through add-in
boards. In the depicted example, local area network (LAN)
adapter 310, Small computer system interface (SCSI) host
bus adapter 312, and expansion bus interface 314 are con-
nected to PCI local bus 306 by direct component connection.
In contrast, audio adapter 316, graphics adapter 318, and
audio/video adapter 319 are connected to PCI local bus 306
by add-in boards inserted into expansion slots.

Expansion bus interface 314 provides a connection for a
keyboard and mouse adapter 320, modem 322, and additional
memory 324. SCSI host bus adapter 312 provides a connec-
tion for hard disk drive 326, tape drive 328, and CD-ROM
drive 330. Typical PCI local bus implementations will sup-
port three or four PCI expansion slots or add-in connectors.

An operating system runs on processor 302 and is used to
coordinate and provide control of various components within
data processing system 300 in FIG. 3. The operating system
may be a commercially available operating system, such as
Windows XP®, which is available from Microsoft Corpora-
tion. An object oriented programming system such as Java
may run in conjunction with the operating system and provide
calls to the operating system from Java programs or programs
executing on data processing system 300. “Java” is a trade-
mark of Sun Microsystems, Inc. Instructions for the operating
system, the object-oriented operating system, and programs
are located on storage devices, such as hard disk drive 326,
and may be loaded into main memory 304 for execution by
processor 302.

Those of ordinary skill in the art will appreciate that the
hardware in FIG. 3 may vary depending on the implementa-
tion. Other internal hardware or peripheral devices, such as
flash ROM (or equivalent nonvolatile memory) or optical disk
drives and the like, may be used in addition to or in place of
the hardware depicted in FIG. 3. Also, the processes of the
present invention may be applied to a multiprocessor data
processing system.

As another example, data processing system 300 may be a
stand-alone system configured to be bootable without relying
on some type of network communication interface, whether
or not data processing system 300 comprises some type of
network communication interface. As a further example, data
processing system 300 may be a Personal Digital Assistant
(PDA) device, which is configured with ROM and/or flash
ROM in order to provide non-volatile memory for storing
operating system files and/or user-generated data.

The depicted example in FIG. 3 and above-described
examples are not meant to imply architectural limitations. For
example, data processing system 300 may also be a notebook
computer or hand held computer as well as a PDA. Further,
data processing system 300 may also be a kiosk or a Web
appliance. Further, the present invention may reside on any

10

15

20

25

30

35

40

45

50

55

60

65

8

data storage medium (i.e., floppy disk, compact disk, hard
disk, tape, ROM, RAM, etc.) used by a computer system.
(The terms “computer,” “system,” “computer system,” and
“data processing system” and are used interchangeably
herein.)

RDMA-Optimized Caching

FIG. 4A is a schematic that illustrates a system environ-
ment using RDMA for caching, which includes a Server 400
connected to a Client 402 by means of RDMA NICs 404 and
406, wherein the RDMA NICs 404 and 406 communicate
using standard networking protocols. A central concept of
RDMA is the use of remote pointers 408a, 4085. The Server
400 exports a server-side remote pointer 408a to the Client
402 that refers to a data record 410 in a pinned and registered
page 412 stored in the memory 414 of the Server 400. Simi-
larly, the Client 402 may have a client-side remote pointer
4085 that refers to a data record 410 in a pinned and registered
page 412 stored in the memory 416 of the Client 402, which
may or may not be exported to the Server 400. In both
instances, the pointers 408a, 4085 comprise handles that
include a page 412 value and an address value for the record
410. The records 410 stored in pages 412 in the memory 414
of the Server 400 provide a cache, while the records 410
stored in pages 412 in the memory 416 of the Client 402
provide data for one or more applications executed by the
Client 402 (not shown). One-sided RDMA operations allow
the Client 402 to directly access (read and overwrite) the
record 410 stored in the page 412 in the memory 414 of the
Server 400 using the server-side remote pointer 408a.

Specifically, the RDMA NIC 406 of the Client 402
remotely controls the RDMA NIC 404 of the Server 400. A
remote pointer 408a is retrieved from the memory 416 of the
Client 402. The RDMA NIC 406 then transmits the remote
pointer 408a to the RDMA NIC 404 of the Server 400. The
RDMA NIC 404 performs DMA (Direct Memory Access)
operations transferring records 410 into and out of the
memory 414 of the Server 400 as specified by the remote
pointer 408a. Similarly, the RDMA NIC 406 ofthe Client 402
performs DMA operations transferring records 410 into and
out of the memory 416 of the Client 402, which may be
specified or otherwise associated with the remote pointer
4085.

These RDMA operations do not require execution of any
software in the Server 400 or Client 402, and thus there is no
CPU involvement and no CPU utilization on the Server 400 or
Client 402. Consequently, this results in very fast, near wire-
speed, remote access by the Client 402 into and out of the
memory 414 of the Server 400 (and similarly, remote access
by the Server 400 into and out of the memory 416 of the Client
402). For example, a read or overwrite by the Client 402 of a
record 410 stored in the memory 414 of the Server 400 can
occur within single-digit microseconds.

In one embodiment of the present invention, a metadata
hash map 418 is used with the RDMA operations, as shown in
FIG. 4B. The Server 400 creates the metadata hash map 418,
wherein each entry or slot in the metadata hash map 418 is
associated with a key 420 for a record 410, wherein the key
420 is hashed to select the slot in the hash map 418. The
associated entry in the metadata hash map 418 stores an
object-value 422 comprising metadata for the record 410,
wherein the metadata includes the server-side remote pointer
408a for the record 410, including an address 422a for the
page 412 storing the record 410 and an address 4224 for the
record 410 within the page 412, as well as a version identifier
422c¢ for the key 420. The metadata may also include a size
(not shown) for the record 410.

2 <

US 9,332,083 B2

9

The size of the metadata hash map 418 is typically only a
fraction of the amount of memory 414 allocated for the
records 410 and pages 412. For example, the metadata hash
map 418 may have asize in the 10s of megabytes as compared
to the pages 412 in memory 414 allocated for the records 410
that may have a size in the 10s of gigabytes. The metadata
hash map 418 can be kept relatively small by using advanced
hashing techniques that substantially reduce collisions (e.g.,
the metadata hash map 418 does not need to contain the keys
420 for all entries, but only for those slots that have actual
collisions).

As illustrated in FIG. 4C, the Server 400 transmits one or
more entries from its metadata hash map 418 to one or more
Clients 402 at some designated time, as represented by arrow
(1). Generally, this will occur when the metadata hash map
418 on the Server 400 is updated in response to a CRUD
(Create, Read, Update, Delete) operation performed by the
Server 400 at the direction of the Client 402.

Typically, the Clients 402 will only maintain a subset of the
entries found in the metadata hash map 418 ofthe Server 400
in their local copy of the metadata hash map 418. The Clients
402 can use their local copy of the metadata hash map 418 to
locally look up metadata associated with the records 410
using the keys 420, in order to perform CRUD (Create, Read,
Update, Delete) operations using RDMA on records 410
stored in the memory 414 of the Server 400, as represented by
arrow (2).

Finally, the Server 400 transmits one or more entries from
its metadata hash map 418 to one or more Clients 402 at some
other designated times, as represented by arrows (3). For
example, this may also occur, e.g., when requested by the
Client 402, at Client 402 startup, when requested by the
Server 400, at Server 400 startup, when the metadata hash
map 418 changes for other reasons, or at other intervals, etc.

CRUD Operations

The specifics of the CRUD operations performed using the
RDMA-optimized cache of embodiments of the present
invention are described in more detail below. As noted previ-
ously, the reading and overwriting of records 410 involves
little or no execution of any software in the Server 400, and
thus there is little or no CPU involvement and little or no CPU
utilization on the Server 400. On the other hand, the creation
or deletion of records 410 may require more execution of
software in the Server 400.

Moreover, the creation, deletion or update of records 410
may also require that copies of entries in the metadata hash
map 418 maintained on the Server 400 be transmitted to the
Client 402, so that the copy of the metadata hash map 418 on
the Client 402 can be updated when records 410 are created,
deleted or updated.

Create

In a Create (or Insert) operation, the following steps are
performed:

The Client 402 performs an RDMA-send operation and

passes a key 420 from the new record 410, a hash code
for the key 420, and a value for the key 420.

The Server 400 allocates and registers a new record 410 in
a page 412 in its memory 414. Associated with the new
record 410 is the key 420 and the value for the key 420
received from the Client 402, as well as object-value 422
comprising metadata for the new record 410, wherein
the metadata comprises the server-side remote pointer
408a for the new record 410 (i.e., a local pointer to the
Server 400), including an address 4224 for the page 412
storing the record 410 and an address 4225 for the record
410 within the page 412, as well as a version identifier
422c¢ for the key 420.

10

15

20

25

30

35

40

45

50

55

60

65

10

The Server 400 uses the hash code for the key 420 to
identify the slot in the metadata hash map 418 and adds
the object-value 422 comprising metadata for the new
record 410 to the slot in the metadata hash map 418,
wherein the metadata comprises the server-side remote
pointer 408a for the new record 410 (i.e., a local pointer
to the Server 400), including an address 422a for the
page 412 storing the record 410 and an address 4225 for
the record 410 within the page 412, as well as a version
identifier 422¢ for the key 420. If successful, the Server
400 transmits an acknowledgement (ACK) to the Client
402, including the object-value 422 from the metadata
hash map 418 for the new record 410. When the Client
402 receives the ACK, its metadata hash map 418 is
updated by adding the object-value 422 in the slot in the
metadata hash map 418.

Otherwise, if unsuccessful, the Server 400 transmits a non-
acknowledgement (NACK) to the Client 402. When the
Client 402 receives the NACK, it returns an error indi-
cation to one or more applications.

The results of the Create (or Insert) operation include the

following:

The cache on the Server 400 includes a new record 410.

The metadata hash map 418 on the Server 400 is updated to
reflect the current state of the cache on the Server 400.

One or more entries in the metadata hash map 418 on the
Client 402 are updated to reflect the current state of the
cache on the Server 400.

The latency of the Create (or Insert) operation is:

Typically 10-30 us for the create operation on the Server
400.

An additional 10-15 ps until the Clients 402 have received
object-value 422

Read

In a Read operation, the following steps are performed:

The Client 402 hashes the key 420 of the desired record 410
to identify one or more entries in its copy ofthe metadata
hash map 418 storing the object-value 422 comprising
metadata for the record 410, wherein the metadata com-
prises the server-side remote pointer 4084 for the record
410, including an address 422a for the page 412 storing
the record 410 and an address 4225 for the record 410
within the page 412, as well as a version identifier 422¢
for the key 420.

Specifically, the hashing of the key 420 returns a set of one
or more potentially matching entries from the metadata
hash map 418. A low collision hashing function ensures
that sets with more than one potentially matching entry
from the metadata hash map 418 is rare.

For each potentially matching entry, the following steps are
performed:

The Client 402 allocates and registers a local data struc-
ture for a record 410 in a page 412 in its memory 416.
(This can be done once, at startup, and reused for
subsequent operations.) Associated with the local
data structure, and referencing both the record 410
and page 412, is a client-side remote pointer 4085.

The Client 402 performs a one-sided RDMA-read
operation on the Server 400, using the server-side
remote pointer 408a from the hash map 418 as the
source and the client-side remote pointer 4085 as the
target, and the record 410 on Server 400 is copied into
the record 410 on the Client 402.

The Client 402 determines whether the key 420 in the
record 410 returned from the Server 400 matches the
key 420 of the desired record 410.

US 9,332,083 B2

11

If the keys 420 match, then Client 402 determines
whether the version identifier 422¢ in the record 410
returned from the Server 400 matches the version
identifier 422¢ found in the object-value 422 of the
metadata hash map 418 stored on the Client 402.

If the version identifiers 422¢ match, then the key 420 is
valid and the record 410 is valid. The Client 402 can
either use the data in its record 410 as-is or copy it
somewhere else.

If the version identifiers 422¢ do not match, then the
entry in the metadata hash map 418 is stale and the
entry is removed from the metadata hash map 418.

Upon completion, the Client 402 can either keep or free
any allocated memory.

If the key 420 was not matched, or if the key 420 was
matched but the version identifier 422¢ was not
matched, then the Client 402 sends the key 420 to the
Server 400 with an active request to retrieve the associ-
ated data record 410. In response, the Server 400 may
transmit an acknowledgement (ACK) to the Client 402
and return the associated data record 410, which
includes the key 420, and the object-value 422, and the
Client 402 returns the data record 410 to one or more
applications and updates its metadata hash map 418 with
the object-value 422. Otherwise, if unsuccessful, the
Server 400 transmits a non-acknowledgement (NACK)
to the Client 402, and the Client 402 returns an error
indication to one or more applications.

The results of the Read operation include the following:

The metadata hash map 418 on the Client 402 may be
updated with a new or valid object-value 422 for the
requested key 420.

The data record 410 or an error indication may be returned
to one or more applications.

The latency of the Read operation is:

Typically 3-10 us when the key and version identifier are
matched; otherwise, 10-30 us to request a data record
410 from the Server 400.

Update

In an Update operation, the following steps are performed:

The Client 402 hashes the key 420 of the desired record 410
to identify one or more entries in its copy ofthe metadata
hash map 418 storing the object-value 422 comprising
metadata for the record 410, wherein the metadata com-
prises the server-side remote pointer 408« for the record
410, including an address 422a for the page 412 storing
the record 410 and an address 4225 for the record 410
within the page 412, as well as a version identifier 422¢
for the key 420.

Specifically, the hashing of the key 420 returns a set of one
or more potentially matching entries from the metadata
hash map 418. A low collision hashing function ensures
that sets with more than one potentially matching entry
from the metadata hash map 418 is rare.

For each potentially matching entry, the following steps are
performed:

The Client 402 allocates and registers a local data struc-
ture for a record 410 in a page 412 in its memory 416.
(This can be done once, at startup, and reused for
subsequent operations.) Associated with the local
data structure, and referencing both the record 410
and page 412, is a client-side remote pointer 4085.

The Client 402 performs a one-sided RDMA-read
operation on the Server 400, using the server-side
remote pointer 408a from the hash map 418 as the
source and the client-side remote pointer 4085 as the

10

15

20

25

30

40

45

50

55

60

65

12

target, and the record 410 on Server 400 is copied into
the record 410 on the Client 402.

The Client 402 determines whether the key 420 in the
record 410 returned from the Server 400 matches the
key 420 of the desired record 410.

If the keys 420 match, then Client 402 determines
whether the version identifier 422¢ in the record 410
returned from the Server 400 matches the version
identifier 422¢ found in the object-value 422 of the
metadata hash map 418 stored on the Client 402.

If the version identifiers 422¢ match, then the key 420 is
valid and the record 410 is valid. The Client 402
performs a one-sided RDMA-write operation on the
Server 400, using the client-side remote pointer 4085
as the source and the server-side remote pointer 408a
from the hash map 418 as the target.

If the version identifiers 422¢ do not match, then the
entry in the metadata hash map 418 is stale and the
entry is removed from the metadata hash map 418.

Upon completion, the Client 402 can either keep or free
any allocated memory.

If (a) the key 420 was not matched, or (b) the key 420 was
matched but the version identifier 422¢ was not
matched, or (¢) the key 420 was matched and the version
identifier 422¢ was matched but the size of the previous
data record 410 is smaller than the size of the new data
record 410, then the Client 402 sends the datarecord 410
to the Server 400 with an active request to update the
associated data record 410 stored on the Server 400. The
Server 400 generates a new version identifier and
updates the data record 410, as well as the metadata hash
map 418.

Upon receipt of the update request, the Server 400 locates
the slot in its metadata hash map 418 for the key 420
passed in the message by the Client 402.

If the slot is valid, the Server 400 allocates and registers a
new record 410 in a page 412 in its memory 414. Asso-
ciated with the new record 410 is the key 420 and the new
value for the key 420 received from the Client 402, as
well as an object-value 422 comprising metadata for the
new record 410, wherein the metadata comprises the
server-side remote pointer 408a for the new record 410
(i.e., a local pointer to the Server 400), including an
address 422a for the page 412 storing the new record 410
and an address 4224 for the record 410 within the page
412, as well as a new version identifier 422¢ for the key
420.

Oncethe new record 410 is created, the Server 400 replaces
the old record 410 in the associated slot in the metadata
hash map 418 for the key 420 with the information from
the new record 410, and removes the old record 410 by
setting its version identifier as invalid and returning its
memory region to the allocator’s free pool.

If successful, the Server 400 transmits an acknowledge-
ment (ACK) to the Client 402, and returns the key 420
and the updated object-value 422, wherein the Client
402 returns a success indication to one or more applica-
tions and updates its metadata hash map 418 with the
updated object value 422.

Otherwise, if unsuccessful, the Server 400 transmits a non-
acknowledgement (NACK) to the Client 402, and the
Client 402 returns an error indication to one or more
applications.

The results of the Update operation include the following:

The record 410 on the Client 402 is copied into the record
410 on the Server 400, thereby updating the cache on the
Server 400.

US 9,332,083 B2

13

The metadata hash map 418 on both the Server 400 and the
Client 402 may be updated with a new or valid object-
value 422 for the requested key 420.

The latency of the Update operation is:

Typically 2-5 us when a match occurs; otherwise, 10-30 us.

Delete

In a Delete operation, the following steps are performed:

The Client 402 hashes the key 420 and performs an
RDMA-send operation passing the key 420 and a hash
code for the key 420 to the Server 400.

The Server 400 uses the key 420 and the hash code for the
key 420 to identify the entry in its copy of the metadata
hash map 418 storing the object-value 422.

If the key 420 from the metadata hash map 418 on the
Server 400 matches the key 420 received from the Client
402, then the entry is removed from the metadata hash
map 418 on the Server 400, and the data record 410 is
removed from the cache on the Server 400 (i.e., the
version identifier is set as invalid and its memory is
returned to the allocator’s free pool).

If successful, the Server 400 transmits an acknowledge-
ment (ACK) to the Client 402, including the object-
value 422, and the Client 402 returns a success indica-
tion to one or more applications and removes the entry
from its metadata hash map 418.

Otherwise, ifunsuccessful, the Server 400 transmits a non-
acknowledgement (NACK) to the Client 402, and the
Client 402 returns an error indication to one or more
applications.

The results of the Delete operation include the following:

The record 410 on the Server 400 may be deleted, and the
metadata hash map 418 on the Server 400 may be
updated.

The record 410 on the Client 402 may be deleted, and the
metadata hash map 418 on the Server 400 may be
updated.

The latency of the Delete operation is:

Typically 10-30 ps.

Other considerations related to the Delete operation

include:

The Server 400 can perform “garbage collection” on its
deleted records 410, and then update the hash map 418 to
reflect the current state of the cache on the Server 400.

The metadata hash maps 418 on one or more Clients 402
may contain stale object-values 422. However, this will
not break consistency, as the Client 402 should inspect
the version identifiers 422 in the object-values 422 for
correctness.

Metadata Hash Map Updates

As noted above, the Server 400 may transmit one or more

entries from its metadata hash map 418 to one or more Clients
402 at some designated time, e.g., when a CRUD operation
performed by the Server 400 at the direction of the Client 402
results in one or more entries of the metadata hash map 418
being updated, and only those updated entries are transmitted
by the Server 400 and received by the Client 402. Moreover,
the Server 400 may transmit one or more entries from its
metadata hash map 418 to one or more Clients 402 at some
other designated times, e.g., when requested by the Client
402, at Client 402 startup, when requested by the Server 400,
at Server 400 startup, when the metadata hash map 418
changes for other reasons, or at other intervals, etc. In addi-
tion, updates to the hash map 418 may occur in bulk (e.g., the
entire hash map 418) or incrementally (e.g., only changed
entries in the hash map 418), or using some combination
thereof.

10

15

20

25

30

35

40

45

50

55

60

65

14

In one embodiment, the Client 402 may start off with an
empty metadata hash map 418 and relay “cache misses™ to the
Server 400 when the key 420 has not been found in its local
metadata hash map 418, resulting in the object-value 422
comprising metadata for the record 410 being returned by the
Server 400 to the Client 400, wherein the metadata comprises
the server-side remote pointer 408a for the record 410,
including an address 422a for the page 412 storing the record
410 and an address 4225 for the record 410 within the page
412, as well as a version identifier 422¢ for the key 420. This
embodiment has the following implications:

The size of the local metadata hash map 418 can be tuned

to a desired number of entries.

Automatic entry eviction can be implemented on the Client
402 to free up entries in the local metadata hash map
418, although the policy used, such as time-to-live
(TTL), least-recently-used (LRU), least-frequently-
used (LFU), is application-dependent and may vary
from one embodiment of the invention to another.

In other embodiments, any number of different techniques
may be used in transmitting entries in the metadata hash map
418 from the Server 400 to the Client 402, and then subse-
quently updating the metadata hash map 418 on the Server
400 from the Client 402.

Logical Flow for Accessing the Cache

FIG. 5 is a flowchart that illustrates the general steps or
functions for accessing a data record 410 stored in a cache on
a Server 400, according to one embodiment of the present
invention.

Block 500 represents the step or function of storing a
metadata hash map 418 on the Server 400 and/or one or more
Clients 402, wherein the metadata hash map 418 includes one
ormore entries associated with a key 420 for a data record 410
stored in the cache on the Server 400, and each of the entries
store a object-value 422 comprising metadata for a corre-
sponding data record 410, wherein the metadata comprises
the server-side remote pointer 408a that references the cor-
responding data record 410, including an address 422a for the
page 412 storing the record 410 and an address 4224 for the
record 410 within the page 412, as well as a version identifier
422¢ forthe key 420. Typically, the metadata hash map 418 on
the Client 402 stores only a subset of the entries stored in the
metadata hash map 418 on the Server 400, and the metadata
hash map 418 on the Client 402 is updated only when a create,
read, update or delete operation performed by the Server 400
at the direction of the Client 402 results in one or more entries
of the metadata hash map 418 being updated, and only those
updated entries are transmitted by the Server 400 and
received by the Client 402.

Block 502 represents the step or function of the Client 402
or the Server 400 accessing a selected data record 410 stored
in the cache on the Server 400 using a provided key 420 by:
(1) identitying one more potentially matching entries in the
metadata hash map 418 using the provided key 420; (2)
accessing one or more data records 410 stored in the cache on
the Server 400 using the server-side remote pointers 408a
from the potentially matching entries in the metadata hash
map 418; and determining whether the accessed data records
410 match the selected data record 410 using the provided key
420 and the version identifiers 422¢ from the potentially
matching entries in the metadata hash map 418. Specifically,
the data records 410 may be accessed by performing one or
more RDMA operations on the Client 402 using the server-
side remote pointer to directly access the data records 410
stored in the cache on the Server 400 via an RDMA NIC.

Block 504 represents an optional step or function of trans-
mitting one or more entries from the metadata hash map 418

US 9,332,083 B2

15

from the Server 400 to some or all of the Clients 402, in order
to update the metadata hash map 418, in addition to the
updates made in Block 500 (and generally triggered by events
other than those described in Block 500).

Shared Java Virtual Machine (JVM) Runtime Artifacts
Stored in the Cache

The cache system described above can be used in a number
of different applications. One application of particular note is
the use of the cache system as a high-performance, distrib-
uted, shared, data grid for Java Virtual Machine (JVM) runt-
ime artifacts

Background on JVM Artifacts

Many enterprise applications run on JVMs. To ensure scal-
ability, high-availability, reliability and quality of service
(QoS), enterprise applications may be distributed across sev-
eral nodes of a computing cluster, wherein each node runs one
or more JVMs. As the same application code is distributed
across all of the JTVMSs on the nodes of the cluster, each JVM
loads the same set of Java classes and performs just-in-time
(JIT) compilation of the same functions, often repeatedly,
leading to wasted memory and processor cycles. In this con-
text, “jitted” code refers to JIT compilation, wherein a code
segment is preparatively compiled to physical machine code
prior to execution, in order to run faster.

There exist various technologies to alleviate this waste or
resources.

For example, J9 is a JVM developed by IBM Corporation,
the assignee of the present invention. The J9 JVM supports a
“Shared Classes” operating mode that enables the sharing of
loaded Java classes within a single logical partition (LPAR),
wherein the LPAR is a subset of a computer system’s hard-
ware resources, virtualized as a separate computer, such that
a physical machine can be partitioned into multiple LPARs,
each hosting a separate operating system (OS) instance or
image. However, there is no sharing among isolated JVMs.
Instead, the “Shared Classes™ technology enables multiple
local JVMs to share a common address space, but only in a
single OS image, wherein the common address space stores
cached versions of jitted or ahead-of-time (AOT) compiled
code and class elements, as shown, for example, in FIG. 6.

FIG. 6 is a schematic diagram that illustrates the “Shared
Classes” technology, according to one embodiment of the
present invention. Specifically, FIG. 6 shows a Compute
Node 600 comprising a single LPAR operating under the
control of an OS Image 602. There are two JVMs 604,
wherein each JVM 604 includes a User Heap 606 that stores
the data for this particular instance of the JVM 604, JIT Code
608 that is one or more code segments that are subject to JIT
compilation prior to execution, AOT Code 610 that is one or
more code segments subject to AOT compilation prior to
execution, User Classes 612 that comprise the classes for this
particular application, and System Classes 614 that com-
prises a library of classes available to all applications. In the
“Shared Classes” mode, only one copy of the AOT Code 610,
User Classes 612 and System Classes 614 is loaded into the
Compute Node 600, and that single copy is shared among all
of the JVMs 604, as indicated by the arrows 616.

Although not a JVM, the C# Common [Language Infra-
structure (CLI) developed by Microsoft Corporation, which
is an open specification defining an environment that allows
multiple high-level languages to be used on different com-
puter platforms without being rewritten, also provides an
execution environment that supports a static cache of gener-
ated code that can be shared across execution environments.

However, neither of these technologies support sharing
across multiple LPARs on a single node, let alone across

25

40

45

16

physically distributed nodes. Indeed, there is no good cross-
machine JVM artifact sharing system available.

The problem is that these classes must be verified and
consume 10’s of megabytes (MB) of memory. Moreover,
compiled code is expensive to produce, and itself consumes
10’s of MB of memory. Further, at least one JVM on each
LPAR has to go through the same startup sequence, loading
the Shared Classes, which leads to long startup times and is a
waste of CPU cycles. Placing pre-built ROM caches into
LPARs is possible, but too complex. The use of live heaps
results in LPAR savings, but requires hypervisor page de-
duplication.

Moreover, current JVM monitoring solutions are limited.
Dynamic monitoring is intrusive, limited, and resource con-
suming. In addition, core file analytics, such as the Whole-
system Analysis of Idle Time (WAIT) tool provided by IBM
Corporation, the assignee of the present invention, provides
more insight but is not “live”, i.e., used in real-time during
execution. Consequently, there also is no viable solution for
in-depth, dynamic monitoring of distributed Java applica-
tions.

Overview of Storing JVM Artifacts in the Cache

The present invention solves these problems by supporting
distributed Java applications using a variant of the client-
server cache system described above in FIGS. 4A,4B,4C and
5. Specifically, this invention enables sharing JVM artifacts
across physically distributed nodes and OS instances,
wherein an artifact is a file, usually a Java ARchive (JAR) file,
that s stored in a cache on one or more Servers and referenced
by one or more Clients via the distributed metadata hash map.

The Servers store cache entries comprising the JVM arti-
facts in large pre-allocated and pinned/registered memory
pages. For each entry that is added to the cache, metadata is
created that contains information about the location of the
entry in the cache, as well as the version of the key for the
entry. The metadata can be used to access the cache entries
using RDMA operations.

Each Server contiguously stores the key and data values of
an entry in the metadata hash map. The key also includes a
unique version identifier, which is equivalent to the one stored
in its metadata. The Server stores handles or pointers to the
cache entries and the version identifiers for the keys in a
metadata hash map that is hashed by the entry’s key.

Instead of providing Clients with a remote get/put interface
to a cache stored on a Server, the Server provides the clients
with some or all of the metadata hash map that contains
key-value pairs made of the cache entries’ keys paired to
metadata comprising their remote RDMA pointers and the
keys’ version identifiers. The metadata hash map allows the
Client to look up a cache entry’s metadata using a key, and
then access the cache entry on the Server using the remote
RDMA pointer in a one-sided RDMA operation and perform-
ing a comparison with the version identifier for the key.

The complete metadata hash map is stored on the Server,
while the Clients may store only a subset of entries from the
metadata hash map. At startup, the Client starts with an empty
metadata hash map, which is then updated as operations are
performed by the Client. Specifically, the Client uses its meta-
data hash map to locally look up a remote cache entry’s
handle and use it to directly perform CRUD (Create, Read,
Update, Delete) operations on the entry in the Server using
RDMA operations.

Consequently, this invention reduces memory costs
because each JVM artifact is only stored once for a cluster.
The present invention essentially provides a global cache for
JVM artifacts that are shared in a distributed cluster environ-
ment comprised of Servers. Moreover, Clients support

US 9,332,083 B2

17
“Shared Classes” with JVMs, which results in additional
sharing of code and classes within a single node of the dis-
tributed cluster environment.

Description of Storing JVM Artifacts in the Cache

The present invention enables sharing class data including
code that is compiled just-in-time (JIT) or ahead-of-time
(AOT), or any other kind of runtime JVM artifacts within the
same LPAR, across LPARSs co-located on one node in a clus-
ter, and across physically distributed LPARs located on dif-
ferent nodes in a cluster, using an RDMA-enabled,
in-memory, distributed, metadata hash map that is used to
access one or more Servers storing a cache comprised of the
JVM artifacts. Clients also rely on a cache service, whichis a
common library that provides a bridge between the Servers
and the JVMs local to the Clients through a system similar to
the currently existing “Shared Classes” system, i.e., through
a shared memory containing AOT code and class items.

The benefits of the proposed invention include the follow-
ing:

(1) Each artifact is only stored once in the entire cluster,
saving tremendous amount of memory but also precious CPU
cycles, because avoiding JIT compilation is always a good
thing.

(2) Thanks to RDMA, each artifact can be accessed
quickly, e.g., in a matter of single-digit microseconds.

(3) Artifacts other than classes and jitted code, such as
runtime objects like core information, can also be made glo-
bally accessible through the cache.

(4) Thanks to the speed of RDMA-capable interconnects,
the overhead of fetching a remote object is quite low, e.g.,
virtually null.

To accomplish these benefits, the present invention pro-
poses both a Client/Server Architecture and a Peer-2-Peer
Architecture for sharing JVM artifacts, as described in more
detail below.

Client/Server Architecture for Storing JVM Artifacts in the
Cache

In one embodiment, the cache service may be implemented
as a traditional Client/Server Architecture, wherein the dis-
tributed metadata hash map is used by a Client to access a
cache of JVM artifacts stored on a Server, as shown, for
example, in FIG. 7.

FIG. 7 is a schematic diagram that illustrates the Client/
Server Architecture implementation, according to one
embodiment of the present invention. Specifically, FIG. 7
shows a Compute Node 700 comprising a single LPAR oper-
ating under the control of an OS Image 702. There are two
JVMs 704, wherein each JVM 704 includes a User Heap 706
that stores the data for this particular instance of the JVM 704,
and JIT Code 708 that is one or more code segments that are
subject to JIT compilation prior to execution. In addition to
the two JVMs 704, there is a Client 710, that performs in the
same manner as described for the Client 402 in FIGS. 4A, 4B,
4C and 5 above, wherein the Client 710 stores a copy of the
distributed hash map in order to reference and retrieve AOT
Code 712 that is one or more code segments subject to AOT
compilation prior to execution, User Classes 714 that com-
prise the classes for this particular application, and System
Classes 716 that comprise a library of classes available to all
applications. Cache Services 718 provide a library of func-
tions available to the Client 710.

In the “Shared Classes” mode, only one copy of the AOT
Code 712, User Classes 714 and System Classes 716 is loaded
into the Compute Node 700, as part of the Client 710, and that
single copy is shared among all of the JVMs 706 and the
Client 710, as indicated by the arrows 720. To obtain the
shared copy of the AOT Code 712, User Classes 714 and

10

15

20

25

30

35

40

45

50

55

60

65

18

System Classes 716, the Client 710 communicates with one
or more Servers 722, 724, which may comprise Cache Pri-
mary Servers 722 that store a primary copy or partition of the
cache or Cache Replica Servers 724 that store a replica copy
of'the primary copy or partition of the cache. The Servers 722,
724 store the JVM artifacts, namely the AOT Code 712, User
Classes 714 and System Classes 716, in the cache, which can
be referenced by the Client 710 using the distributed hash
map.

This embodiment reduces memory costs, because each
artifact is only present once for the Compute Node 700 and is
maintained in the Servers 722, 724. The Servers 722, 724
maintain a global cache for JVM artifacts that are then dis-
tributed to the different Compute Nodes 700. In each Com-
pute Node 700, the JVMs 704 support “Shared Classes,” but
only within a single OS image 702, and not across a plurality
of OS images 702.

Peer-to-Peer (P2P) Cluster Architecture for Storing JVM
Artifacts in the Cache

As an alternate embodiment, instead of using a traditional
Client/Server Architecture, the cache service may be imple-
mented as a Peer-to-Peer (P2P) Cluster Architecture, wherein
the distributed metadata hash map is used by a Client to
access a cache of JVM artifacts stored by Servers that is
distributed over the nodes of the P2P cluster, as shown, for
example, in FIG. 8. In this architecture, a node of the cluster
may implement both a Client and a Server, or just a Client, or
just a Server.

FIG. 8 is a schematic diagram that illustrates the Peer-2-
Peer (P2P) Cluster Architecture implementation, according
to one embodiment of the present invention. Specifically,
FIG. 8 shows a Compute Node 800 comprising a single LPAR
operating under the control of an OS Image 802. There are
two JVMs 804, wherein each JVM 804 includes a User Heap
806 that stores the data for this particular instance of the JVM
804, and JIT Code 808 that is one or more code segments that
are subject to JIT compilation prior to execution. In addition
to thetwo JVMs 804, there is a Client 810, that performs in the
same manner as described for the Client 402 in FIGS. 4A, 4B,
4C and 5 above, wherein the Client 810 stores a copy of the
distributed hash map in order to reference and retrieve AOT
Code 812 that is one or more code segments subject to AOT
compilation prior to execution, User Classes 814 that com-
prise the classes for this particular application, and System
Classes 816 that comprise a library of classes available to all
applications. Cache Services 818 provide a library of func-
tions available to the Client 810.

In the “Shared Classes” mode, only one copy of the AOT
Code 812, User Classes 814 and System Classes 816 is loaded
into the Compute Node 800, as part of the Client 810, and that
single copy is shared among all of the JVMs 806 and the
Client 810, as indicated by the arrows 820. To obtain the
shared copy of the AOT Code 812, User Classes 814 and
System Classes 816, the Client 810 communicates with the
Cache P2P Cluster 822 to access one or more Servers 824 that
store a copy of the cache. The Servers 824 store the JVM
artifacts, namely the AOT Code 812, User Classes 814 and
System Classes 816, in the cache, which can be referenced by
the Client 810 using the distributed hash map.

This embodiment reduces memory costs, because each
artifact is only present once for the Compute Node 800 and is
maintained in the Servers 824 of the Cache P2P Cluster 822.
The Servers 824 maintain a global cache for JVM artifacts
that are then distributed to the different Compute Nodes 800.
In each Compute Node 800, the JVMs 804 support “Shared
Classes,” but only within a single OS Image 802, and not
across a plurality of OS Images 802.

US 9,332,083 B2

19

Scenarios for Storing JVM Artifacts in the Cache

The present invention envisions the following scenarios in
either architecture.

With regard to generated (JIT/AOT) code, a number of
enhancements are available using the present invention as
compared to the prior art. For example, generated code can be
placed in the remote cache, depending on whether the code is
position-independent or relocatable, and depending on
whether the nodes in the cluster are homogeneous.

In another example, when a JVM needs a jitted function, it
first checks the cache service, in case the function is already
present. If the function is present, then it uses the available
version. Ifthe function is not present, then it may generate the
code and push it into the cache, i.e., by performing a Create
operation via the Client.

With regard to Java classes, a number of enhancements are
also available from the present invention as compared to the
prior art. For example, Java classes can be placed in the
remote cache. Then, any JVM in the cluster can access any
Java classes involved in the application without accessing
either local or remote file systems.

The storing of artifacts in the cache provides advantages
when updating the artifacts, such as when the Java classes are
updated from an earlier version to a later version. For
example, if the JVMs in the cluster support “hot” updates,
then updating the classes (with added features, bug fixes, etc.)
for an application in the cache is much easier and faster than
traditional updating methods that deploy new JARs on local
or remote shared file systems and restart the applications.

With regard to monitoring information, a number of
enhancements are available. For example, the distributed
cache, thanks to its speed, could enable real-time monitoring
of all the JVMs involved in a cluster, as well as increase the
level of detail that could be monitored (e.g. dynamic WAIT).

Advantages to Storing JVM Artifacts in the Cache

In either instance, the cache operates as described above in
FIGS. 4A, 4B, 4C and 5 using RDMA-based operations,
distributed hash maps and key/value pairs. Because the cache
is an advanced key/value store, there are no limitations on the
key and value formats. In addition, the cache supports
RDMA-based CRUD operations, as well as lock and unlock
operations. It is envisioned that, for this application, read and
update operations would involve the client-side only, while
create and delete operations would involve the server-side as
well. It is also envisioned that the distributed metadata hash
map can be integrated into XS as a high-performance map.

Moreover, the Client/Server Architecture and Peer-to-Peer
(P2P) Cluster Architecture support partitioning, as well as
replication, of the cache. The Client/Server Architecture also
allows the Client to access multiple remote Servers, while the
Peer-to-Peer (P2P) Cluster Architecture may co-locate a Cli-
ent and a Server (as well as the entire cache or a partition of
the cache) on one or more of the nodes.

Finally, experimental data suggests superior performance
from the present invention. It is expected that CRUD opera-
tions would be distributed as 10% C, 60% R, 20% U, 10% D,
with an average 1 KB value. Throughput is expected to
approach 1.25 MTPS, with an average latency of 8.5 ps.

Benefits to Storing JVM Artifacts in the Cache

Other benefits of the present invention include the follow-
ing:

More aggressive elastic, high-density configurations:

At least 25% startup time improvement for any node in
the cluster, more radical numbers expected as cache
capacity virtually unlimited.

No disk I/O for any class access, cache latency is three
orders of magnitude smaller.

20

25

30

35

40

45

50

55

60

65

20

Real-time performance analytics:
Dynamic deep insight of distributed application behav-
ior at the cluster level.
Enables on-line optimization, leak detection, reschedul-
ing, redistribution, etc.
Low-latency caching and object sharing without extra
middleware:
Traditional object store require extra management,
deployment and resources.
Low-latency object store as part of a distributed JVM
service.

CONCLUSION

This concludes the detailed description of the invention.
The following describes some alternative embodiments for
accomplishing the present invention.

Those skilled in the art will recognize many modifications
may be made to this configuration without departing from the
scope of the present invention. Specifically, those skilled in
the art will recognize that any combination of the above
components, or any number of different components, includ-
ing computer programs, peripherals, and other devices, may
be used to implement the present invention, so long as similar
functions are performed thereby.

For example, any type of computer, such as a mainframe,
minicomputer, or personal computer, could be used with and
for embodiments of the present invention. In addition, many
types of applications other than caching applications could
benefit from the present invention. Specifically, any applica-
tion that performs remote access may benefit from the present
invention.

The foregoing description of the preferred embodiment of
the invention has been presented for the purposes of illustra-
tion and description. It is not intended to be exhaustive or to
limit the invention to the precise form disclosed. Many modi-
fications and variations are possible in light of the above
teaching. It is intended that the scope of the invention be
limited not by this detailed description, but rather by the
claims appended hereto.

What is claimed is:

1. An apparatus for accessing data stored in a cache on a

server, comprising:

(a) a client connected to a server, wherein instructions are
stored in memory by the client and the server, such that,
when the instructions are executed by a hardware pro-
cessor, the instructions cause the server and the client to
perform the following functions:

(b) the server and the client both storing a metadata hash
map that is associated with a cache stored on the server,
wherein:

(1) the cache stores one or more data records that com-
prise an artifact, wherein the artifact is a Java virtual
machine (JVM) artifact and the client shares the arti-
fact with among applications in a shared classes JVM
environment on the client;

(2) the metadata hash map includes one or more entries
associated with the data records stored in the cache,
each of the entries is associated with a key for a
corresponding data record in the cache, each of the
entries store metadata for the corresponding data
record, and the metadata comprises a server-side
remote pointer that references the corresponding data
record stored in the cache on the server, as well as a
version identifier for the key; and

US 9,332,083 B2

21

(c) the client accessing a selected data record stored in the
cache on the server using a provided key by:

(1) identifying one or more potentially matching entries
in the metadata hash map using the provided key;

(2) performing one or more remote direct memory
access (RDMA) operations to access one or more data
records stored in the cache on the server using the
server-side remote pointers from the potentially
matching entries identified in the metadata hash map;
and

(3) determining whether the data records accessed by the
RDMA operations match the selected data record
using the provided key and the version identifiers
from the potentially matching entries identified in the
metadata hash map.

2. The apparatus of claim 1, wherein the Java virtual
machine (JVM) artifact comprises generated code, user
classes or system classes, that the client shares with other
applications in the shared classes JVM environment.

3. The apparatus of claim 1, wherein the client creates or
updates the selected data record comprising the artifact and
stores the selected data record in the cache on the server.

4. The apparatus of claim 1, wherein the selected data
record comprises monitoring information and the client
stores the monitoring information in the cache stored on the
server.

5. The apparatus of claim 4, wherein the monitoring infor-
mation comprises run-time information from a Java virtual
machine (JVM) and the monitoring information is used to
tune the JVM.

6. The apparatus of claim 1, wherein the metadata hash
map on the client is updated when a create, read, update or
delete operation performed by the server at the client’s direc-
tion results in the metadata hash map on the server being
updated.

7. A method for accessing data stored in a cache on a server,
comprising:

(a) connecting a client to a server, wherein instructions are
stored in memory by the client and the server, such that,
when the instructions are executed by a hardware pro-
cessor, the instructions cause the server and the client to
perform the following functions:

(b) storing a metadata hash map on the server and the client
that is associated with a cache stored on the server,
wherein:

(1) the cache stores one or more data records that com-
prise an artifact, wherein the artifact is a Java virtual
machine (JVM) artifact and the client shares the arti-
fact with among applications in a shared classes JVM
environment on the client;

(2) the metadata hash map includes one or more entries
associated with the data records stored in the cache,
each of the entries is associated with a key for a
corresponding data record in the cache, each of the
entries store metadata for the corresponding data
record, and the metadata comprises a server-side
remote pointer that references the corresponding data
record stored in the cache on the server, as well as a
version identifier for the key; and

(c) the client accessing a selected data record stored in the
cache on the server using a provided key by:

(1) identifying one or more potentially matching entries
in the metadata hash map using the provided key;

(2) performing one or more remote direct memory
access (RDMA) operations to access one or more data
records stored in the cache on the server using the

10

15

20

25

30

35

40

45

50

55

60

65

22

server-side remote pointers from the potentially
matching entries identified in the metadata hash map;
and

(3) determining whether the data records accessed by the
RDMA operations match the selected data record
using the provided key and the version identifiers
from the potentially matching entries identified in the
metadata hash map.

8. The method of claim 7, wherein the Java virtual machine
(JVM) artifact comprises generated code, user classes or sys-
tem classes, that the client shares with other applications in
the shared classes JVM environment.

9. The method of claim 7, wherein the client creates or
updates the selected data record comprising the artifact and
stores the selected data record in the cache on the server.

10. The method of claim 7, wherein the selected data record
comprises monitoring information and the client stores the
monitoring information in the cache stored on the server.

11. The method of claim 10, wherein the monitoring infor-
mation comprises run-time information from a Java virtual
machine (JVM) and the monitoring information is used to
tune the JVM.

12. The method of claim 7, wherein the metadata hash map
on the client is updated when a create, read, update or delete
operation performed by the server at the client’s direction
results in the metadata hash map on the server being updated.

13. A computer program product for accessing data stored
in a cache on a server, said computer program product com-
prising:

a non-transitory computer readable storage medium hav-

ing stored or encoded thereon:

program instructions executable by one or more computers
to cause the computers to perform the steps of:

(a) connecting a client to a server, wherein instructions are
stored in memory by the client and the server, such that,
when the instructions are executed by a hardware pro-
cessor, the instructions cause the server and the client to
perform the following functions:

(b) storing a metadata hash map on the server and the client
that is associated with a cache stored on the server,
wherein:

(1) the cache stores one or more data records that com-
prise an artifact, wherein the artifact is a Java virtual
machine (JVM) artifact and the client shares the arti-
fact with among applications in a shared classes JVM
environment on the client;

(2) the metadata hash map includes one or more entries
associated with the data records stored in the cache,
each of the entries is associated with a key for a
corresponding data record in the cache, each of the
entries store metadata for the corresponding data
record, and the metadata comprises a server-side
remote pointer that references the corresponding data
record stored in the cache on the server, as well as a
version identifier for the key; and

(c) the client accessing a selected data record stored in the
cache on the server using a provided key by:

(1) identifying one or more potentially matching entries
in the metadata hash map using the provided key;

(2) performing one or more remote direct memory
access (RDMA) operations to access one or more data
records stored in the cache on the server using the
server-side remote pointers from the potentially
matching entries identified in the metadata hash map;
and

(3) determining whether the data records accessed by the
RDMA operations match the selected data record

US 9,332,083 B2

23

using the provided key and the version identifiers
from the potentially matching entries identified in the
metadata hash map.

14. The computer program product of claim 13, wherein
the Java virtual machine (JVM) artifact comprises generated
code, user classes or system classes, that the client shares with
other applications in the shared classes JVM environment.

15. The computer program product of claim 13, wherein
the client creates or updates the selected data record compris-
ing the artifact and stores the selected data record in the cache
on the server.

16. The computer program product of claim 13, wherein
the selected data record comprises monitoring information
and the client stores the monitoring information in the cache
stored on the server.

17. The computer program product of claim 16, wherein
the monitoring information comprises run-time information
from a Java virtual machine (JVM) and the monitoring infor-
mation is used to tune the JVM.

18. The computer program product of claim 13, wherein
the metadata hash map on the client is updated when a create,
read, update or delete operation performed by the server at the
client’s direction results in the metadata hash map on the
server being updated.

#* #* #* #* #*

10

15

20

25

24

